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I. EXTENDED ABSTRACT

S INCE power line communications (PLC) use the existing grid infrastructure for data transmission, it is favorable to
reuse the employed power line modems (PLMs) also for grid diagnostics [1]–[3]. As the cable ages, the dielectric

properties of its insulation continuously deteriorate [4, Ch. 5]. This deterioration also manifests as a change in the PLC
channel [2], which can be captured during the channel estimation procedure inside the PLMs. Therefore, the grid can be
monitored remotely simply by extracting information indicative of cable health conditions from the estimated PLC channel.

However, a challenge that arises with this method is to distinguish PLC channel changes that are produced by cable
degradations and the variations caused due to other activities, for e.g., varying load conditions. To this end, in our previous
work, we proposed a data-driven framework for cable diagnostics, as shown in Fig. 1 [1]. We begin by identifying a salient
localized degradation on each network branch. If no such degradation is present, we proceed to predict an equivalent cable
age that provides an intuitive indication into the homogeneous degradation severity level of the cable. On the other hand,
when we encounter a salient localized degradation, we assess its condition by predicting its extent as well as its degradation
severity level. To achieve these goals, we use machine learning (ML) techniques to train either a classifier or a regressor
for automated diagnosis.

Fig. 1: Cable Diagnostics Framework

In this paper, we build on our previous work to investigate the use of the automated ML (AutoML) technique that
automatically selects the best ML algorithm and the associated hyper-parameters to optimize performance in terms of the
user-defined cost function for the given ML task within a fixed computational budget. While in [1] we suggested the
use of boosting methods that provide excellent performance when each training/testing sample contains small number of
features [5, Table 16.3], it does not guarantee the best performance for each of the tasks in our proposed cable diagnostics
framework (see Fig. 1). At the same time, an investigation into the use of different ML algorithms could also clarify the
abilities and limitations of our proposed cable diagnostics framework.

For the implementation of AutoML, we use auto-sklearn that enables meta-learning and automated ensemble construction
of models for increased efficiency and robustness [6]. We apply auto-sklearn to each ML task of our cable diagnostics
framework. In this work, we investigate the water-treeing degradation in extruded cross linked polyethylene cables.1 For a
fair comparison with the state-of-the-art, we use the same training and testing samples as those in [1].

1Please refer [1] for the water-treeing model, bottom-up PLC channel generation procedure, applied network topology and load conditions, and methods
used to generate training and testing channel conditinos.
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(a) trained with the raw data
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(b) trained with the extracted features

Fig. 2: Equivalent age prediction for homogeneous cable degradations using auto-sklearn.

The results of equivalent age prediction for homogeneous cable degradations achieved by auto-sklearn is shown in Fig. 2.
For the results of Fig. 2a, we use the raw channel impulse response (CIR) data to train the machine without any feature
extraction. Next, we test the performance of AutoML by feeding in manually extracted features to determine its impact on
the performance. Fig. 2b shows the results for this setting, where we use the same set of features extracted in [1] to train
the machine.

We notice that for the task of equivalent age prediction, training the machine with raw data gives the best performance
both in terms of prediction accuracy and variance. The fitted line nearly passes through the origin with a unit slope, and
each individual prediction lies close to the fitted line. Specifically, we obtain a root-mean-square deviation (RMSD) of 1.52
by training with the raw CIR data (Fig. 2a), while the RMSD is as high as 2.69 when we manually feed in extracted features
(Fig. 2b). For comparison with the state-of-the-art, least-square boosting used in [1] achieves an RMSD of 3.46. Therefore,
AutoML, which uses a combination of different ML algorithms to construct an ensemble of models achieves close to 60%
lower RMSD than using a single ML algorithm applied in [1]. In particular, the results of Fig. 2b are achieved with a
combination of adaptive boosting, gradient boost, gradient boost (with different hyper-parameters), extra trees, decision
trees, and k-nearest neighbors, where the proportion of each of them are 0.52, 0.22, 0.1, 0.08, 0.04, and 0.02, respectively.

While we significantly improve the prediction performance using the constructed ensemble of different models, we
recognize that our proposed solution introduces higher computational cost. Further, for some tasks, for e.g., predicting the
length of a localized degradation (not shown in this extended abstract), we notice that training the machine with extracted
features (as done for the results of Fig. 2b) provides better prediction accuracy compared to training with raw data. This
shows that domain knowledge can sometimes assist us in selecting useful features for a specific ML task.

In conclusion, along with generally satisfactory performance, AutoML has also helped us gain deeper understanding into
the suitability of different ML algorithms for each of the cable diagnostics tasks.
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